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15
Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding
but it does have some limitations. This chapter deals with the alterna-
tive and more generally useful approach of stratification. We shall again
illustrate our argument using the study of the relationship between en-
ergy intake and IHD first introduced in Chapter 13 and further analysed
in Chapter 14. There, in Table 14.1, we showed the data stratified by
10-year age bands and demonstrated that the low energy intake group is,
on average, rather older. This might explain some, or all, of the increase
in THD incidence rate. The method of direct standardization predicts the
marginal rates for energy intake groups with the same standard age dis-
tribution. This chapter explores the alternative approach which compares
age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat-
ing rate ratios within each age band. This demonstrates the main prob-
lem with this approach to confounding; holding age constant and making
comparisons within age strata leads to variable and unreliable estimates,
because the age-specific rates are based on so few data.

This problem is resolved is by combining the age-specific comparisons
from the separate strata, but any such procedure carries with it a further
modelling assumption, because combining the age-specific comparisons can
only be legitimate if we believe that they all estimate the same underlying
quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Exposed Unexposed
(< 2750 kcal) (= 2750 kcal) Rate
Age D Y Rate D Y Rate ratio
40-49 2 311.9 6.41 4 6079  6.58  0.97
5
8

50-59 12 878.1 13.67 12721 393  3.48
60-69 14 667.5 20.97 888.9 9.00 2.33

Total 28 1857.5 1507 17 2768.9 6.4  2.45
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groups is.constant across age-bands, the evidence from the three bands can
be brought together to provide a single estimate of the (constant) age-
specific rate ratio. Of course the model on which the estimate is based, like
all models, is open to question and in later chapters we shall discuss ways

in which we can test whether it holds. For the present, we shall be content,

to believe that the model holds in our example, and that the fluctuation
of age-specific rate ratios in Table 15.1 is no more than we would expect
given the small numbers of cases in each age band.

" Qur notation follows naturally from earlier chapters. The age bands are
indexed by the superscript £ and exposure groups are indexed by subscripts,
so that A§ and A} are the rate parameters in age band ¢ for the unexposed
and exposed subjects respectively. We shall write the rate ratio parameter
as 0, so that the model of constant rate ratio may be written

)\t
A—%:G.

This is called the proportional hazards model. The parameter  is called
the rate ratio for exposure controlled for age, sometimes abbreviated to the
effect of exposure controlled for age. In this chapter we discuss how 6 can
be estimated.

15.2 The likelihood for 6

When the rate ratio is constant across age bands, we can replace the rate
parameters A% by #)5. In our example, this reparametrization replaces the
original six rate parameters, which we assume to be constrained to obey the
proportional hazards model, with four parameters which are free to take
any positive value. One parameter, namely the rate ratio 6, is our prime
interest, and the remaining three are regarded as nuisance parameters.

Since each age band serves as an independent study, it is a simple
matter to write down the log likelihood. for a stratified comparison. Con-
structing the log likelihood using the prospective argument, each age band
contributes a term which depends upon 8 and the appropriate A5. The
total likelihood is obtained by adding these terms over age bands. For
comparing rates between exposed and unexposed subjects, the parameters
A} are nuisance parameters. As'in Chapter 13, replacing these by their
most likely value for given @ leads to a profile log likelihood for §. With the
caveat expressed at the end of section 13.3, this log likelihood can also be
justified as a conditional likelihood based on the split of cases within each
stratum.

The log likelihood ratio curve for log(6) in our illustrative example is
shown in Figure 15.1. Using a computer, it is a simple matter to find
the most likely value, M, and to use the curvature of the log likelihood
ratio to compute a Gaussian approximation. In this case M = 0.8697
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Fig. 15.1. Log likelihood ratio for the common rate ratio.

and S = 0.3080, and this approximation is shown as a broken line in the
figure. The most likely value of the rate ratio is exp(0.8697) = 2.386 and
confidence intervals can be calculated using the error factor:

exp(1.645 x 0.3080) = 1.660.

The fact that the high energy-intake group is, on average, slightly younger
than the low energy-intake group is the reason why the estimate of the rate
ratio controlled for age is slightly smaller than the crude rate ratio (2.45).
However, the difference is extremely small. This is not unusual; rather large
differences between exposure groups in important variables are necessary
for the effect of confounding to be appreciable.

Unfortunately it is not possible to calculate the values of M and S by
hand using simple formulae. The computer programs which are used to
carry out such computations are very flexible and allow more complicated
models to be fitted. Accordingly discussion of these will be postponed
until Part II and the remainder of this chapter will deal with methods
which require only a hand calculator.

15.3 A nearly most likely value for 6

‘We saw in Chapter 13 that, in an unstratified analysis, both profile and
conditional arguments led to the Bernoulli likelihood

Dy log(2) — Dlog(l + ),
' ’
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where €, the odds for a case having been exposed, is 1) /Yo. The gradiént
of the curve of log likelihood versus log(6) is

Q

D, —D——
1= P
which, after substituting 8Y;/Y; for Q and rearranging becomes

1
Yo+ 01

where W = 1/(Yy + 6Y1). In a stratified analysis, the log likelihood is the
sum of contributions of each stratum,

> [D¥1og(€) — D*log(1+ Q"))

(D1Yy — 6DoYy) = W (D1 Yo — §DoY1),

and the gradient is similarly constructed by adding up gradient contribu-
tions:
S Wt (DiYs - 6DgYY)
where Wt = 1/(Y¢ + 0Y¢) are stratum weights.
The most likely value of § occurs where the gradient is zero, that is, at

,_ SWDi
> WDV

Since calculation of the weights Wt involves 6, and this equation cannot
be used directly to find the most likely value. However, it can be used
iteratively as follows:

1. guess a value for §, and use this to calculate initial weights;

2. using these, calculate a first estimate of 6;

3. using this new estimate, calculate more accurate weights.

The sequence of calculations may be repeated until there is no change in
the estimate. Computer programs for maximum likelihood estimation use
similar iterative methods of computation.

In practice, the estimate obtained is not very sensitive to changes in
the values of the weights — rather large changes make only a relatively
small difference to the estimate. Additionally, it may be argued that it
is only really important to achieve the closest approximation to the log
likelihood when estimating rate ratios which are fairly close to 1. These
considerations suggest using the weights corresponding to the choice 6 =1,
and to go no further with the calculations. These weights are the reciprocal
of the person-years observations in each age band:

1 1

t _ = .
W TYE+YyE Y
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Use of these weights leads to the Mantel-Haenszel estimate of the rate
ratio*,

> DiYg/Y®
2 DgY/Y®
In this expression, each age band makes contributions of
Div¢ DiYd
t_ Hifg t _ oty
=y F="y

to the top (numerator) and bottom (denominator) of the estimate respec-
tively. The estimate of the rate ratio for age band ¢ is Q*/R* and the
combined estimate of the constant rate ratio is Q/R, where @ = > @ and
R=> R.

Exercise 15.1. Calculate Q* and R’ for each of the three age bands in Table 15.1,
and hence calculate the Mantel-Haenszel estimate of the rate ratio. Compare this
with the most likely value.

15.4 Calculating p-values and confidence intervals

Approximate p-values are most easily calculated using the score test. Since
the log likelihood for # for the age-stratified comparison is the sum of
contributions from each age band, it follows that its gradient, and hence
the score, is the sum of scores for each stratum. Similarly, the curvature
is the sum of the curvatures of the separate contribution of each stratum
so that the overall score variance is the sum of score variances for each
stratum. That is,

U=>Y_ Ut v=> v

Thus to carry out the test we first calculate scores and score variances
for each stratum separately and then sum these over strata to obtain the
total score and score variance. We then compare (U)?/V with the chi-
squared distribution in the usual way. The contribution of stratum ¢ to
the score and score variance are of the same form as given at the end of
section 13.2, namely

Ut=D?! -~ Dt7rt®, Vt = Dirh(1 - 7rt®),

where 75, = Y /Y, the ratio of exposed to total person years.

Exercise 15.2. For our example, what is the p- va.lue for the null hypothesis
that, after controlling for age, the rate ratio is 1.

*In fact Mantel and Haenszel did not propose/ﬂ(zsﬁthod but an extremely similar
one for case-control studies. We shall discuss this in Chapter 18.
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As before, the value of U may be interpreted as the difference between the
number of cases who had been exposed and the number expected under
the null hypothesis, taking into account the age structures of exposed and
unexposed groups.

The calculation of the score variance, V, also allows us to calculate an,

approximate confidence interval around the Mantel-Haenszel estimate. A
Gaussian approximation on the log(#) scale, with

\4
S=4]==.
QR
can be used to calculate an error factor and the approximate confidence
interval in the usual way.t

Exercise 15.3. Calculate the standard deviation, S, of the log Mantel-Haenzsel
estimate for the energy intake data. Use this to calculate a 90% confidence
interval for the rate ratio adjusted for age.

These results are very close to those obtained using a computer program to
find the Gaussian approximation to the log likelihood curve. The computer
method is better in the sense that, as the quantity of data increases, the
approximate interval of support approachs the correct likelihood-based in-
terval, while the Mantel-Haenszel interval remains slightly wider no matter
how much data we collect. The discrepancy is rarely important.

15.5 The log-rank test

Our example in this ch?ﬁter has involved stratification by a time scale,
age, into three rather broad bands. In clinical follow-up studies time is
measured from diagnosis or start of treatment and the incidence of events
may vary rapidly, requiring the choice of narrow bands. This, together with
the fact that choice of bands may introduce an arbitrary element into the
analysis, has led to the popularity of a version of the test in which time
is stratified infinitely finely into clicks, with no click containing any more
than one event. This test is called the log rankt or Mantel-Coz test.
Derivation of this test from that of the previous section is straightfor-
ward. The first thing to notice is that clicks which contain no event (i-e.
with D* = 0) make no contribution either to the score, U, or the score vari-
ance, V. We therefore need only consider those clicks in which we observe
the occurrence of an event in one of the gr&m/:f) These are are

TThis approximation is not widely known, but it would not appropriate to justify it
here. Tt suffices to say that it is adequate for all our purposes.

1This nomenclature may seem rather obscure, since the calculation of the test requires
neither logarithms or ranks! It arises from an alternative derivation.
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Table 15.2. Survival times in two groups of patients
Group Time (days)
Test treatment  86,99*,119*,123*,139*,161*, 185*, 212*, 231, 253*,
(V = 20) 262*, 281*,303*, 355, 360, 380*, 392,467*, 499*, 514*
Control 73,91,102%,120%, 135, 160%, 194, 202*, 209*, 220*,
(N = 20) 252,270*,296,330*, 347*,375%, 390*, 414, 475*, 485*

known as informative time points.S Since each click is very short, we need
not consider variation in the time spent by different subjects in the band,
and the null probability that a failure was exposed becomes

. N{ Number of exposed subjects in study at time ¢

Ty = — =
@ Nt Total number of subjects in study at time ¢

Each failure makes a contrlbutlon to the score of the dlﬁerence between the

the expected number, w] which is sunply 7t To-
by adding the contributions T

The score variance is obtalned

V= b (1 — ).

Exercise 15.4. Table 15.2 shows times between entry to a clinical trial and
relapse for patients receiving two methods of therapy. (The data are only illus-
trative — a real trial with so much censoring would need to be much larger than
this!) The times marked with an asterisk represent times at which observation
ceased without occurrence of relapse. Construct a table showing the times of
occurrence of relapses, the number of patients in each group under study at each
of these times, and the corresponding observed and expected relapses in the test
group. Use this table to carry out the score test.

15.6 Comparison with reference rates: the SMR

An important special case concerns the comparison of age-specific rates in
a study cohort, A*, with those in a reference population, which we shall
denote by Af,. We have discussed this informally in Chapter 6. A more
formal treatment follows as a simple case of the methods discussed above.

The proportional hazards model holds that the ratio of age-specific rates
in the study cohort to the reference rates is constant across age bands,

8Since clicks have no duration, we assume that no more than one event occurs at any
time point.
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If we-observe D* failures in Y'¢ person years of observation in each age band
of the cohort, the log likelihood contribution is

Dtlog()?) — \fY?
and making the substitution A* = A% this becomes
D*log(6) + D log(\%) — OALY®.

Since the reference rates A% are calculated from very large populations, they
are effectively known constants, and the above log likelihood depends onty
on one unknown parameter, §. The second term in the log likelihood does
not depend on # and can be ignored, and the third term may be sir.npliﬁed
after noting that ALY"* is the expected number of failures o_btalned by
multiplying the age-specific reference rate by the correspondu.lg person-
years of observation of the study cohort (see Chapter 6). Denoting this by
E?, the log likelihood contribution of one age band becomes

D% log(6) — 0E*
and summation over age bands leads to the total log likelihood
Dlog(6) — 6F,

where D, F are the total observed and expected numbers of failures. This
is a Poisson log likelihood, but the rate ratio parameter 6 replaces the rate
parameter A, and the expected number of failures F replaces the person-
years Y. Thus estimating 6 in this case is just the same as estimating
a rate. The most likély value is the ratio of observed to expected cases,
D/E, and in epidemiology this is called the standardized mortality ratio,
or SMR. A 90% confidence interval can be calculated using the error factor

/1
exp (1.645 5) .

An approximate p-value for the null hypothesis § = 1 can be carried out
using the score and score variance -

Comparison of rates with reference rates in this way is known in epidemi-
ology as indirect standardization.

Exercise 15.5. In the follow-up study of ankylosing spondyliti.s patients d%s—
cussed in Chapter 6, the observed number of deaths from leukaemia was 31 while
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the expected number calculated from reference rates was 6.47. Calculate the 90%
confidence interval for the common ratio of cohort age-specific rates to reference
rates. Also calculate an approximate p-value for the null hypothesis 8 == 1.

Exercise 15.6. The calculation of the expected number of deaths in the anky-
losing spondilitis study was based on person-years classified by both age and
calendar period (see Chapter 6). What further modelling assumption is formally
necessary to justify the analysis carried out in the previous exercise?

' 15.7 Comparing standardized rates

We showed in Chapter 14 that standardized rates estimate the marginal
rates when the age distributions are corrected to a common standard.
These are weighted sums of age-specific rates. In the case of three age
bands, the marginal rate is

W1A1+W2)\2+W3>\3

where (W', W2, W?3) are the relative frequencies of the three age bands in
the standard distribution, and the ratio of two marginal rates, corrected to
the same age distribution, is

WA +W32A2 4 W3NS
WIN +W2AZ + W3S

When the proportional hazards model holds, every term in the numerator
of this expression is @ times the corresponding term in the denominator, and
it follows that the ratio of marginal rates will also be 8 — the relationship
between marginal rates is the same as that between the conditional (age-
specific) rates. Thus, the ratio of standardized rates can be used as an
estimate of §. However it may not be a very good estimate if the standard
age distribution gives high weight to age bands with few failures.

Note that the equivalence demonstrated above between the conditional
and marginal comparisons does not hold for all stratification models. For
example, if the ratio of the age-specific odds of failure for exposed and
unexposed subjects is a constant, 8, for all ages then the ratio of marginal
odds is not equal to 4, even when there is no confounding and the age
distributions are identical. Thus we cannot always rely on the method of
direct standardization if we are interested in comparisons within strata. In
Chapter 18 we shall encounter an important example of this.

15.8 Comparison of SMRs

Although the ratio of standardized rates can be used as an alternative
estimate of 6, there has been some controversy as to whether the ratio of
two SMRs can also be used in this way.
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An understanding of the formal model which lies behind indirect stan-
dardization clarifies this argument. Calculation of an SMR for an exposed
cohort, using reference rates AL implies the model

A= G0,

where 6; is the constant ratio of rates in this cohort to reference rates.
Similarly, calculation of an SMR for an unexposed cohort implies the model

A= o),

A direct consequence of these two models is that the ratio of rates for
the two cohorts is also constant across age. This can be demonstrated by
simply dividing the two equations, when AL cancels leaving

M6

X6

Thus if the age-specific rates for both exposed and unexposed cohorts are
proportional to the reference rates, the comparison of SMRs is legitimate.
Since the likelihoods for §; and 8y are Poisson in form, with expected
numbers of failures E; and Ej replacing person-years observation Y; and
Y,, the likelihood for their ratio, 6, is the same as for the rate ratio in
Chapter 13.

This method, however, relies on the assumption that both sets of age-
specific rates are proportional to the reference rates. If they are propor-
tional to each other, but not to the reference rates, then the ratio of SMRs
will not correctly estimate the rate ratio 6. Because of this additional as-
sumption concerning reference rates, estimation of d by the ratio of SMRs
is not usually to be recommended.

Solutions to the exercises

15.1 The calculations are as follows:
Age Qt R
40-49 2 % 607.9/919.8 =132 4 x 311.9/919.8 = 1.36
50-59 12 x 1272.1/2150.2 =7.10 5 x 878.1/2150.2 = 2.04
60-69 14 x 888.9/1556.4 =8.00 8 X 667.5/1556.4 = 3.43
Total 16.42 6.83

The Mantel-Haenszel estimate is 16.42/6.83 = 2.40 while the most likely
value is 2.39.

15.2 The score is:

311.9 878.1 667.5
v= (2 0 ) * (12 - 172150.2) * (14 -2 1556.4)
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= 28-1841
= 9.59

and the score variance is

311.9 x 607.9 878.1 x 1272.1 667.5 x 838.9
Vo= gx e XD g, SO X 212D £o7.0 x 8899
P98 X T aisae 22X (15564
— 13444114539
10.84.

The chi-squared value (1 degree of freedom) is (9.59)2/10.84 = 8.48 and
P < 0.005.

15.3 The standard deviation for the approximation is

Iy Ay ——
QR V1642x6.83 U7

The error factor for the 90% confidence interval is exp(1.645x0.311) = 1.67,
and recalling that the Mantel-Haenszel estimate was 2.40, the confidence
limits are 2.40/1.67 = 1.44 (lower limit) and 2.40 x 1.67 = 4.01 (upper
limit).

15.4 The times at which events occurred, the numbers of patients under
observation, and the observed and expected relapses in the test group are
shown below.

t NI N: N' Dt B
73 20 20 40 0 20/40 = 0.50
8 20 19 39 1 20/39=0.51
91 19 19 38 0 19/38=0.50
135 16 16 32 0 16/32=0.50
194 13 14 27 0 13/27=048
231 12 10 22 1 12/22=0.55
0

0

1

0

252 11 10 21 11/21 = 0.52
206 8 8 16 8/16 = 0.50
32 4 3 7 4/7 = 0.57
414 3 3 6 3/6 = 0.50

The overall score is

U=3-(.50+.51+.50+--- 4 .57+ .50) = —2.13
and the score variance is

V = (.50 x .50) + (.51 x .49) + - - - + (.50 x .50) = 2.49.
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The score test is (U)2/V = 1.82 and p > 0.10. This test is the score test
for 8 = 1 in the proportional hazards model which holds that the ratio of
the relapse rates of the two treatments is constant (at ¢) regardless of time
since entry into the trial.

15.5 The most likely value of 8 is the SMR,

31
647 = 4.791.

[1
1.6454/ — | = 1.
exp < 6 31> 1.344,

s6 that the 90% confidence interval is from 4.791/1.344 = 3.56 to 4.791 x
1.344 = 6.44.
The score test is

The error factor is

(31 — 6.47)?

64T = 93.00

and p < 0.001.

15.6 Follow-up was stratified by both age and calendar period when cal-
culating the expected number of deaths. The model which underlies the
above analysis therefore assumes that the ratio of rates in the ankylosing
spondilitis cohort to those in the reference population is constant for all
ages and for all calendar periods.
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